
Chapter 3

Exception handling

New
syllabus
2023-24

Visit : python.mykvs.in for regular updates

Exception Handling

Error in Python can be of two types i.e. Syntax
errors and Exceptions. Errors are problems in a
program due to which will stop the program from
execution. On the other hand, exceptions are raised
when some internal events occur due to limitation
of hardware or software part, which change the
normal flow of the program.

Visit : python.mykvs.in for regular updates

Different types of exceptions in python:
• SyntaxError: This exception is raised when the interpreter encounters a syntax error in
the code, such as a misspelled keyword, a missing colon, or an unbalanced parenthesis.

• TypeError: This exception is raised when an operation or function is applied to an object
of the wrong type, such as adding a string to an integer.

• NameError: This exception is raised when a variable or function name is not found in
the current scope.

• IndexError: This exception is raised when an index is out of range for a list, tuple, or
other sequence types.

• KeyError: This exception is raised when a key is not found in a dictionary.
• ValueError: This exception is raised when a function or method is called with an invalid
argument or input, such as trying to convert a string to an integer when the string does
not represent a valid integer.

• AttributeError: This exception is raised when an attribute or method is not found on an
object, such as trying to access a non-existent attribute of a class instance.

• IOError: This exception is raised when an I/O operation, such as reading or writing a
file, fails due to an input/output error.

• ZeroDivisionError: This exception is raised when an attempt is made to divide a number
by zero.

• ImportError: This exception is raised when an import statement fails to find or load a
module.

Visit : python.mykvs.in for regular updates

Difference between Syntax Error and
Exceptions
Syntax Error: This error is caused by the wrong syntax in the
code.
if(amount > 999)

print(“amount more than 1000")
if(amount > 999)

Exceptions: Exceptions are raised when the program is syntactically

correct, but the code results in an error. This error does not stop the
execution of the program, however, it changes the normal flow of the
program.

a = 10 / 0
print(a)

Visit : python.mykvs.in for regular updates

handling exceptions using try-except-
finally blocks
try:
Some Code....which may have runtime error

except:
optional block
Handling of exception (if required)

else:
execute if no exception

finally:
Some code(always executed)

Visit : python.mykvs.in for regular updates

try:
k = 9//0 # raises divide by zero exception.
print(k)

handles zerodivision exception
except ZeroDivisionError:

print("Can't divide by zero")

finally:
this block is always executed
regardless of exception generation.
print('This is always executed')

Visit : python.mykvs.in for regular updates

Advantages of Exception Handling:

• Improved program reliability
• Simplified error handling
• Cleaner code
• Easier debugging

Disadvantages of Exception Handling:

• Performance overhead
• Increased code complexity
• Possible security risks

Visit : python.mykvs.in for regular updates

